Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
J Biomol Struct Dyn ; : 1-11, 2021 Jun 28.
Article in English | MEDLINE | ID: covidwho-2272367

ABSTRACT

In December 2019, COVID-19 epidemic was reported in Wuhan, China, and subsequently the infection has spread all over the world and became pandemic. The death toll associated with the pandemic is increasing day by day in a high rate. Herein, an effort has been made to identify the potentiality of commercially available drugs and also their probable derivatives for creation of better opportunity to make more powerful drugs against coronavirus. This study involves the in-silico interactions of dexamethasone and its derivatives against the multiple proteins of SARS-CoV-2 with the help of various computational methods. Descriptor parameters revealed their non-toxic effect in the human body. Ultimately docking studies and molecular dynamic simulation on those target protein by dexamethasone and its derivatives showed a high binding energy. Dexamethasone showed -9.8 kcal/mol and its derivative D5 showed -12.1 kcal/mol binding energy. Those scores indicate that dexamethasone has more therapeutic effect on SARS CoV-2 than other currently used drugs. Derivatives give the clue for the synthesis of a novel drug to remove SARS CoV-2. Until then, dexamethasone will be used as a potential inhibitor of SARS CoV-2.Communicated by Ramaswamy H. Sarma.

2.
Systems Microbiology and Biomanufacturing ; : 1-16, 2022.
Article in English | EuropePMC | ID: covidwho-1877185

ABSTRACT

The current scenario of COVID-19 makes us to think about the devastating diseases that kill so many people every year. Analysis of viral proteins contributes many things that are utterly useful in the evolution of therapeutic drugs and vaccines. In this study, sequence and structure of fusion glycoproteins and major surface glycoproteins of respiratory syncytial virus (RSV) were analysed to reveal the stability and transmission rate. RSV A has the highest abundance of aromatic residues. The Kyte–Doolittle scale indicates the hydrophilic nature of RSV A protein which leads to the higher transmission rate of this virus. Intra-protein interactions such as carbonyl interactions, cation–pi, and salt bridges were shown to be greater in RSV A compared to RSV B, which might lead to improved stability. This study discovered the presence of a network aromatic–sulphur interaction in viral proteins. Analysis of ligand binding pocket of RSV proteins indicated that drugs are performing better on RSV B than RSV A. It was also shown that increasing the number of tunnels in RSV A proteins boosts catalytic activity. This study will be helpful in drug discovery and vaccine development.

3.
Systems Microbiology and Biomanufacturing ; : 1-12, 2022.
Article in English | EuropePMC | ID: covidwho-1749615

ABSTRACT

The current nightmare for the whole world is COVID-19. The occurrence of concentrated pneumonia cases in Wuhan city, Hubei province of China, was first reported on December 30, 2019. SARS-CoV first disclosed in 2002 but had not outspread worldwide. After 18 years, in 2020, it reemerged and outspread worldwide as SARS-CoV-2 (COVID-19), as the most dangerous virus-creating disease in the world. Is it possible to create a favorable evolution within the short time (18 years)? If possible, then what are those properties or factors that are changed in SARS-CoV-2 to make it undefeated? What are the fundamental differences between SARS-CoV-2 and SARS? The study is one of the initiatives to find out all those queries. Here, four types of protein sequences from SARS-CoV-2 and SARS were retrieved from the database to study their physicochemical and structural properties. Results showed that charged residues are playing a pivotal role in SARS-CoV-2 evolution and contribute to the helix stabilization. The formation of the cyclic salt bridge and other intra-protein interactions specially network aromatic–aromatic interaction also play the crucial role in SAS-CoV-2. This comparative study will help to understand the evolution from SARS to SARS-CoV-2 and helpful in protein engineering.

SELECTION OF CITATIONS
SEARCH DETAIL